If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+12x-25=0
a = 6; b = 12; c = -25;
Δ = b2-4ac
Δ = 122-4·6·(-25)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{186}}{2*6}=\frac{-12-2\sqrt{186}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{186}}{2*6}=\frac{-12+2\sqrt{186}}{12} $
| 6x2+3x+5=0 | | Y=-1/4x-9 | | 3x+(x-12)=60 | | 0=-16t^2+82t+17 | | |x-2|-4|-6|=0 | | 144+12x=13x-169 | | (12+x)/13=(x-13)/12 | | X^=3x+10 | | 4x²+8x=9 | | 6+1/2*x=4+1/3*x | | 0.953^2n+0.953^n=0.56 | | 114/p=6 | | 9x2+49=0. | | 0.13x=200 | | 9(5x)=5x | | 29x-0.1x=2.70)=56.709(2) | | (x)+(x-10)=96 | | -w/3=0 | | y=83.7(-723.7) | | y=3745 | | −20x40=−20x20 | | 40x40=40x20 | | (x+26)+(3x-8)=180 | | a=4/2(3) | | 6=a–1 | | -3x-99=8x+9 | | 3x-99=8x+9 | | (x^2+x^2)/x^2=2 | | 20=0.25x | | 180=109+(4x-11)+(x-22) | | 3.8=1.14/(x+0.4) | | 3x-4+6x-10=180 |